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Introduction
“If an early-warning system had been in place when the
tsunami of 26 December 2004 struck the Indian Ocean
region, many thousands of lives could have been saved.
That catastrophe was a wake-up call for governments and
many others about the role early warning can play in
avoiding and reducing the human and physical impacts
of natural hazards.”

By this statement Kofi Anan, former UN Secretary Gen-
eral, set the stage after the devastating Indian Ocean
tsunami 2004. Natural hazards threaten people and
values worldwide. Since 2007 more than 50% of the
global population have been living in urban environ-
ments and we see an increasing accumulation of eco-
nomic values in high-risk areas, e.g., in coastal regions.
Thus, the vulnerability of societies to natural hazards
is actually increasing.

Since 2005 two global UN conferences on Disaster Risk
Reduction have resulted in the Hyogo Framework of Ac-
tion (ISDR, 2005) and the Sendai Framework (UNDRR,
2015). Both frameworks identify early-warning sys-
tems for hazards as key components for disaster man-
agement and disaster risk-reduction strategies. Early-
warning systems are understood in both frameworks as
end-to-end systems. To be effective, early-warning sys-
tems must be people-centred and must integrate four
elements: (i) knowledge of the risks faced; (ii) techni-
cal monitoring and warning service; (iii) dissemination
of meaningful warnings to those at risk; and (iv) pub-
lic awareness and preparedness to act. Failure in any
one of these elements can mean failure of the whole
early-warning system. Roughly, one may differentiate
among meteorological, hydrological, geological and
anthropogenic hazards; all of these have individual
characteristics like warning lead times or impact area.
A single hazard or combinations or cascades of them
can lead to direct devastating impact for people, the
environment and/or technical infrastructures.

In this short overview we will focus on early-warning
systems for a set of geological and geophysical hazards,
demonstrating a subjective selection of early-warning
technologies, developments and realisations. Hence,
this review does not claim completeness; nevertheless,
by focusing on a few geohazards, the general and in-
ternationally agreed strategy of the implementation
of early-warning systems for natural hazards should

become clear. A more comprehensive overview is given
by Merz et al. (2020).
Earthquake early warning (EEW)
During an earthquake, different types of seismic waves
are radiated from the earthquake’s hypocentre. First,
weaker but faster-moving P-waves can be detected at
a regional sensor network from which, in turn, sig-
nals are transmitted to data processing centres. In a
second step, algorithms quickly (in the order of one
second) estimate the earthquake’s location and mag-
nitude. Based on empirically derived ground-motion
prediction equations (GMPEs), the system can then
predict which level of ground motion is to be expected
at the target site. If a certain threshold is exceeded,
the system will send an (automatic) alert before slower
but more destructive S-waves and surface waves arrive
at the target site. Examples of this source-estimation-
based approach are EPIC (Allen, 2007) and FINDER
(Böse et al., 2015), where the latter even takes into
account the fact of source finiteness, i.e., it considers
the rupture plane location.

As an alternative to the source-estimation approach, it
is possible to use the observations of shaking within
an expanding wavefront to predict shaking at more
distant sites, with the PLUM method being a recent
example (Kodera et al., 2018). Such a propagation-
based approach requires a relatively dense instrument
network to be effective but can then result in more accu-
rate predictions, albeit at the price of shorter warning
times.

In this way, the regional EEW system may be thought
of as three interlinked components: (1) a real-time
(strong-motion) seismic monitoring network, (2) one
or more software platforms receiving and processing
the real-time signals from the monitoring network and
issuing an alarm, and (3) a technological infrastruc-
ture and a set of operational protocols to broadcast
the alarm and implement specific damage reduction
strategies.

Given the processing chain, this means that people near
the epicentre (in the order of kilometres to a few tens of
kilometres away) will have little, if any, advance warn-
ing, while those farther away may have critical seconds
to brace for shaking. Paired with automated responses
that can slow trains or shut off gas lines, early-warning
systems may help prevent some of the fatalities and
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injuries as well as damage typically associated with
major quakes.

In some cases, small-scale EEW systems may be based
on one or just a few monitoring sensors, installed in
proximity of the target to be protected by the incom-
ing ground motion. This is usually referred to as a
de-centralised (or on-site) early-warning system and
relies solely on the lag between the P- and S-wave.
Applications of this early-warning scheme are grow-
ing, especially in industrial installations, which can
react promptly (and automatically) to the early detec-
tion of the earthquake. For example, such a system is
currently implemented and tested in Germany in the
Industriepark Knapsack near Cologne.

EEW systems now provide public alerts in Mexico,
Japan, South Korea and Taiwan, and alerts to se-
lected user groups in India, Turkey, Romania and the
United States. They are also being tested for use in
Italy, Switzerland, Chile, Israel, Nicaragua, Spain, New
Zealand, Iceland, as well as in Costa Rica and El Sal-
vador. Examples are discussed in Clinton et al. (2016)
and Parolai et al. (2017).

It should be noted that the lead time of early warning
depends strongly on the tectonic regime and resulting
seismicity pattern. For example, in Mexico or Japan
the subduction zone, in particular the plate bound-
ary (megathrust), is easily identified as the dominant
source of moment release. The large distance between
the possible seismic sources and the vulnerable areas
and cities (up to hundreds of kilometres) represents
here a highly suitable case for the application of a
standard regional EEW, and lead times (i.e., the time
available for action between the first detection and the
arrival of the strong shaking) of several tens of seconds
can be achieved. On the contrary, the seismic hazard
in Europe is related to a multitude of potential seismic
sources, often very close to inhabited areas. This re-
duces the lead time in many cases to a few seconds,
therefore allowing only automated, very rapid emer-
gency actions to be undertaken, and mostly excluding
the possibility of alerting the general public.

New technologies represent new opportunities for EEW,
such that most EEW systems in the next years and
decades will likely include one or more of the follow-
ing innovations, for which mostly some prototypes are
already operational. Where the earthquake hazard is
offshore as in subduction zones, systems are expected
to be amphibious and cross shorelines; S-Net in Japan
is an example of this approach. More diverse geophys-
ical observations will be considered, including not just
seismic sensors but also high-rate GNSS, fibre optic
sensing devices (distributed acoustic sensing) and sen-
sors on the seafloor. Observatory-grade sensors will
form a backbone network supported by a large num-
ber of cheap MEMS accelerometers and by millions
of mobile phones everywhere in urban environments;
the feasibility of this approach has been demonstrated

with the MyShake platform in California (Allen et al.,
2020), and the ShakeAlert approach is now covering
the entire western coast of the United States.

Machine-learning algorithms have been sporadically
used for early-warning algorithms for a considerable
time (e.g., Böse et al., 2008) but the rapid develop-
ments of ever more sophisticated algorithms and faster
GPUs (Graphics Processing Unit) have led to an explo-
sion of seismological applications of deep-learning (DL)
methods in the last two to three years.

DL models need to be tuned by training with a large
number of samples from past earthquakes. There are
several modes in which DL is employed. Firstly, DLmod-
els can be used in supporting the source-estimation
task; pilot studies demonstrated the possibility to di-
rectly extract information on magnitude and location
based on just a few seconds of waveforms (Münch-
meyer et al., 2021a). Secondly, in end-to-end estima-
tion, the target variable, e.g., peak ground acceleration
(PGA) or intensity, is predicted directly from a few sec-
onds of waveforms recorded at stations of a network
(Münchmeyer et al., 2021b), allowing the creation
of predicted shake maps in real time (Fig. 1). This
approach implicitly combines the benefits of source-
estimation- and propagation-based approaches. Finally,
DL can be used to predict key parameters such as dis-
tance and magnitude from single station recordings
and thus theoretically improve decentralised warning
strategies.

Machine-learning algorithms can also be trained to
produce probabilistic warnings, i.e., estimate the likeli-
hoods of certain levels of shaking to be exceeded rather
than making a deterministic prediction. This offers the
possibility of allowing different users to set not only dif-
ferent trigger thresholds but also different probabilities
depending on the costs of false and missed alarms, a
possibility of particular interest to automated systems.

DL approaches still have some shortcomings. The
largest events or most intense shaking is often pre-
dicted rather poorly by DL algorithms because due to
the Gutenberg-Richter frequency-magnitude distribu-
tion only few large events are available for training;
DL algorithms are notoriously bad at extrapolation
(another reason for the difficulty with large events is
that the rupture of large events often takes more time
to develop than is available to make a decision on
whether to warn, but this affects DL and classical meth-
ods alike). Transfer learning from other regions has
shown good promise to mitigate this issue but cannot
fully solve it (Münchmeyer et al., 2021a; Jozinović et
al., 2021); another approach being explored is to train
algorithms with synthetic data or using magnitude bal-
ancing approaches (Datta et al., 2022). In evaluating
the performance of early-warning algorithms it is thus
of utmost importance to pay special attention to the
largest events. Finally, the results of ML algorithms are
often inscrutable, making it impossible to understand
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Figure 1: Schematic view of a DL early-warning workflow for the October 2016 Norcia event (Mw=6.5) 2.5 s after
the first P-wave pick (3.5 s after origin time). a) An event is detected through triggering at multiple seismic stations.
The waveform colours correspond to the stations highlighted with orange to magenta outlines. The circles indicate
the approximate current position of P (dashed) and S (solid) wavefronts. b) The input to the DL model (TEAM) are
raw waveforms and station coordinates; it estimates probability densities for PGA at a target set. The exceedance
probabilities for a fixed set of PGA thresholds are calculated based on the estimated PGA probability distribution. c) If
the probability exceeds a threshold, a warning is issued, here 10% PGA with a probability threshold of 40% resulting
in warnings for the stations highlighted. The colours correspond to the stations with green outlines in (a). d) The
real-time shake map shows the highest PGA levels for which a warning is issued. Stations are coloured according to
their current warning level (from Münchmeyer et al., 2021b).

when or why the algorithm might have gone wrong if
it does, and understanding the limits of applicability
except by experimentation. Current developments in
Explainable AImight provide a pathway here, but at the
moment they cannot keep up with physical intuition,
making the workings of classical algorithms relatively
easy to follow.

Volcano early warning (VEW)
Economic losses due to volcano eruptions have in-
creased in recent decades, as vividly demonstrated
by the billion-Euro losses during the Icelandic Eyja-
fjallajökull eruption in 2010 sending ash clouds over
continental Europe, or the 2021 La Palma eruption,
sending extensive lava flows, ash and lapilli over popu-
lated, touristic and industrially used grounds.

There are around 1500 volcanoes considered active.
Active means that the volcano has produced at least
one eruption during the past 10 ka, suggesting that
further eruptions from this volcano are highly likely.
The 10 ka limit and therefore the number of 1500
volcanoes is somewhat arbitrary and does not reflect
the true vast number of potential volcanic sites, which is
expected to be much higher. About 800 million people

live in a 100 km radius of one of the active volcanoes
listed by the Smithsonian Global Volcanism Program
(GVP), which is why operative monitoring and an early-
warning system implementation are important for the
population, industry and relevant infrastructures.

Forecasting the behaviour of volcanoes in the long-term
is challenging, maybe elusive for some volcanoes. The
preparation processes effective beneath a volcano prior
to an eruption, however, may well allow for the detec-
tion of unrest several days, weeks or even months prior
to an eruption. Once buoyant magma is rising through
the crust, degassing and pressurising, the effects can be
monitored by geophysical, geochemical and geodetic
techniques, and critical thresholds of the four param-
eters, seismicity, deformation, gas concentration and
temperature increase, can be communicated towards
alert levels and volcano early-warning systems (VEWS)
as summarised in Figure 2.

Surprising eruptions do still occur, however, even at
those sites well studied and monitored, and where a
VEWS is implemented. The 2018 flank collapse and
tsunami at Anak Krakatau was anticipated by scien-
tists, but unexpected by authorities, killing 430 peo-
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Figure 2: (a) Common elements of a volcano early-warning system (VEWS), highlighting the broad basis of funda-
mental sciences, monitoring and hazard mapping needed to be effective. At the top, alert levels are considered by the
civil authorities and decision makers (not shown here explicitly). Modified after Tilling (1989). (b) Summary of a
colour-coded volcano alert level chart, effective at most active and monitored volcanoes worldwide.

ple (Palmer, 2020). Similarly, the 2019 Stromboli
violent eruption occurred surprisingly, as did the
Whakaari/White Island in that same year, with 1 and
21 fatalities, respectively. The problems of developing
and improving a VEWS are multifold. Some unex-
pected eruptions are near-surface steam-driven explo-
sions, meaning that the monitoring design is not able
to identify such processes. Other unexpected eruptions
occurred, while heightened unrest was reported but
ignored for years. Probably most of the unexpected
eruptions occur due to a lack of sufficient monitoring,
though. The reason is that the high price tag of set-
ting up local monitoring makes it nearly impossible to
instrumentally monitor all 1500 active volcanoes world-
wide. Besides the high costs of precision instruments
(some cost tens of thousands of Euros for a single sen-
sor and logger system), the more sophisticated analysis
methods enabled by modern instrumentation require
more highly trained observatory staff now than in the
past, providing another challenge for the modernisa-
tion of volcano observatories. Therefore, an editorial
published in Nature Communications (“Overcoming fi-
nancial limitations in global volcano monitoring” 2021)
emphasised the need for equitable international part-
nerships in the volcano science community, with two
principal aims: firstly, to better understand a volcano’s
past, present and future behaviour, and secondly, to
develop data timelines allowing to forecast (or early
warn of) imminent eruptions.

Important for understanding and monitoring a vol-
cano is a reduction of personnel, instrumental, and
data costs. Instrumental costs are already falling, as
demonstrated by the low cost (MEMS-type) seismome-
ters (e.g., https://quakesaver.net/), the easy and cost-
effective access by unmanned aerial vehicles (UAVs
or drones), the gravimeters developed in a European
project (http://www.newton-g.eu), or modern com-
puter vision approaches such as applied to webcams
(Walter, 2011), combined with modern data science
approaches (Korolev et al., 2021). Also, personnel

costs are reducing, as data science and remote sensing
approaches are studied in international and interdisci-
plinary partnerships.

Despite these advances, field instrumental and scien-
tific capabilities are still demanding in a sense that
volcanoes have to be revisited regularly, sensors are
multi-parametric, and data communication has to be
guaranteed in the long run. Out of the 1500 listed
active volcanoes, this is done with sufficient quality at
only a few dozens of them. Worldwide around 100 vol-
cano observatories exist, many of them are so badly
equipped that surprising eruptions are bound to occur
again and again. Disparities in the standard of monitor-
ing should be reduced and free data access should be
pushed to enable decentralised volcano monitoring and
support early-warning systems. For submarine events,
such as the 2022 Hunga Tonga eruption, few or no
near-field measurements are available. For such events,
remote sensing and global network data are thus one
of the only information sources to be expanded.

Free and decentralised availability of satellite data ac-
quired by the European Space Agency (ESA) has already
become an important element in VEWS worldwide.
The sharp increase of the amount of data, awareness of
intellectual property rights and data publications, and
improved data science approaches are highly promising
(as highlighted by Witze, 2019). Volcano deformation
and change detection, for example, is monitored by
automatic satellite radar interferometry (InSAR) and
spectral data analysis (Valade et al., 2019; Ghosh et al.,
2021). Therefore, continuation and possibly expansion
of geophysical remote sensing techniques is needed,
such as provided by the planned TanDEM-L mission.
By this, (i) monitoring the thousands of otherwise un-
monitored volcanoes on the globe is in reach, and (ii)
modern volcano observatories can indeed realise im-
portant partnerships, including local instrumental net-
works as well as international remote sensing and data
science expertise.
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Tsunami early warning (TEW)
Tsunamis are relatively rare but potentially high-impact
natural phenomena which may affect large portions
of a coastline taking thousands of people‘s lives and
devastating settlements and infrastructure. Tsunamis –
gravitational waves in the ocean – can be triggered by
various physical phenomena capable of bringing the
sea level out of equilibrium, including earthquakes,
subaerial or submarine landslides, volcano eruptions,
meteo-conditions or asteroid impacts (Grezio et al.,
2017). Most of the devastating tsunamis are, how-
ever, caused by shallow submarine earthquakes as a
result of a static residual deformation of the seafloor.
Whereas it is not feasible to predict the exact location
and magnitude of a future triggering earthquake, it
is nevertheless possible to evaluate source parameters
within a few minutes after an event started and to
use this information to assess a pending tsunami haz-
ard and issue corresponding warnings before the wave
strikes the coast.

Tsunami early-warning efforts started 1949 in the
United States when in response to the M8.6 Aleutian
Islands earthquake and tsunami that devastated the
city of Hilo, Hawaii, the Pacific Tsunami Warning Cen-
ter (PTWC) was established in Honolulu. Tsunami
early warning remained restricted to the Pacific Basin
where, in addition to the US PTWC and later WCATWC
(West Coast and Alaska Tsunami Warning Center), also
Japan and the Soviet Union operated their national
early-warning centres. The situation changed drasti-
cally after the giant Sumatran 2004 boxing-day earth-
quake and tsunami that killed more than 250 000 peo-
ple across the whole Indian Ocean. Many countries
and international organisations coordinated by the
UNESCO Intergovernmental Oceanographic Commission
(IOC) started developing tsunami early-warning ca-
pacities at transocean and national levels (e.g. Lauter-
jung et al., 2010). In particular, a German consor-
tium of research institutions, led by GFZ Potsdam, to-
gether with Indonesian institutions has built the In-
donesian Tsunami Early-Warning System (InaTEWS)
in the GITEWS project (Rudloff et al., 2009), see Fig-
ure 3. All initiatives were then additionally fostered
by the two very large tsunamigenic earthquakes in
2010 (Maule, Chile) and 2011 (Tohoku-oki, Japan).
Presently, we count around 20 tsunami early-warning
systems (TEWS) worldwide (Joseph, 2011). They aim
to forecast the tsunami arrival time as well as the de-
gree of the hazard impact, usually expressed by warn-
ing levels ranging from ’no tsunami’ to ’major warning’.
It is worthwhile to note that there is no common alert-
level classification among different warning centres.

A TEWS for earthquake-triggered tsunamis encom-
passes the following steps: (i) detect an earthquake;
(ii) estimate source parameters; (iii) evaluate the
tsunamigenic impact potential for local and distant
coasts; (iv) disseminate corresponding warning infor-
mation. Newly collected observations from various

kinds of land- and ocean-based sensors are used to up-
date the forecast with time. Depending on the expected
tsunami source proximity, TEWS can be classified as
operating with near- or far-field tsunamis. Near-field
or local TEWS (e.g., Japan, Indonesia, Chile, Mediter-
ranean) have to deal with hazard lead times as short
as 15–20 minutes. This leaves no more than 5-15 min-
utes to issue an alert. In contrast, far-field TEWS (e.g.,
PTWC, India, Australia) operate with source zones
at much greater distances, often transoceanic. Corre-
spondingly, such TEWS are in a muchmore comfortable
position to retrieve detailed source parameters and to
provide more accurate forecasts.

The minimum parameter set for tsunami forecasts in-
cludes earthquake location and magnitude, and can
be available within a few minutes. The correspond-
ing simplest and fastest forecast is based on a decision
matrix: a table which directly assigns a warning level
to earthquake magnitude, depth, and source-to-coast
distance. Such a matrix is used, for instance, in the
Mediterranean (NEAMTWS) and as initial warning by
the US National TWS. Decision matrices are based on
historical experiences. However, due to the rareness of
significant tsunamis and the fact that it is not possible
to establish a common attenuation relation by source-
to-target distance (tsunami waves can propagate across
large distances without significant loss of energy), fore-
cast based on the decision matrix is rather uncertain.
To increase forecast accuracy, modern TEWS employ
physics-based simulations of the tsunami generation
and propagation coupled to observation data fusion.
Numerical models typically (i) predict initial condi-
tions for tsunami propagation based on source infor-
mation inverted from seismic and geodetic observa-
tions and then (ii) solve shallow-water equations to
predict tsunami propagation. As tsunami simulations
are in principle multi-scale – propagation distances may
encompass thousands of kilometres while coastal inun-
dation has a characteristic length of tens to hundreds of
meters – different techniques are used to quantitatively
assess coastal impact. These range from propagation
simulations on a coarse deep-water grid coupled with
offshore-to-onshore projections with simple Green‘s
law (Kamigaichi, 2011) or more sophisticated local
amplification factors (Gailler et al., 2018) to advanced
simulation scenarios on mixed-resolution (Harig et al.,
2020) or nested grids.

Numerical forecasts are constantly updated while new
observations arrive, better constraining the source
model. These include land-based GNSS (whose imple-
mentation into operational TEWS is ongoing; Hoech-
ner et al., 2013) and sea-based observations like tide
gauges and deep ocean-bottom pressure units (Titov
et al., 2005). In the classical approach, thousands of
propagation models were precomputed for all repre-
sentative sources and stored in scenario databases. A
hybrid approach linearly combines precomputed prop-
agations from unit sources according to their weights
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Figure 3: Schematic layout of the German Indonesian Tsunami Warning system (InaTEWS) illustrating the complete
warning chain from the upstream part (monitoring/modelling) to the downstream part (capacity development).

assessed in real time by seismic and deep ocean ob-
servations. In the last decade, the rapid progress in
HPC technologies has allowed on-the-fly simulations
for arbitrary sources. Next-generation TEWS will en-
able realistic inundation simulations in faster than real-
time mode (meaning faster than arrival of the tsunami,
even for near-field situations). Thus, it was possible
to compute a tsunami inundation scenario at a 5 m
grid resolution in less than 1.5 minutes for the Sendai
region replicating the Tohoku 2011 event (75 times
faster than real time, Oishi et al., 2015). In Europe, the
ChEESE project has established a new Center of Excel-
lence (CoE) in the domain of Solid Earth (SE) targeting
the preparation of ten community flagship European
codes for the upcoming pre-Exascale (2020) and Exa-
scale (2022) supercomputers. Two of the ten flagship
codes are GPU-parallelised tsunami simulation codes
of the HySea family (Macías et al., 2017) aimed for
faster-than-real-time simulations.

Development lines in tsunami early warning and fore-
casting are the integration of additional sensors, i.e.,
land and sea-bottom geodesy, smart cables (Howe et
al., 2019), DAS technology or ionospheric observations
using GNSS (Occhipinti et al., 2013). Other develop-
ments comprise the quantification and communication
of the forecast uncertaintiy (Selva et al., 2021), the
extension of TEWS to incorporate non-seismic sources:
landslides (2018 Palu earthquake with massive land-
slides, Schambach et al., 2021; 2018 Krakatau flank
collapse and tsunami, Walter et al., 2019) and volcanic
explosions (the latest January 15, 2022, Tonga erup-
tion is also distinguished by the fact that the far-field
tsunami seems to not have been triggered by the dis-
placement of the water-column near the source but
was driven by a globe-encircling atmospheric pressure
wave).

Space-weather early warning
Space weather is a collective term describing various
hazardous effects related to space. Driven by the elec-
trical currents in space, the variations of the induced
magnetic field on the ground can create currents in
the power grid lines, produce tripping of power grid
systems, and burning of the power-grid transmitters
(Fig. 4). Enhancements of the radiation in space may
cause various anomalies on satellites or even failures
of satellites. While now there are only a few thousand
operating satellites, the number of spacecraft is pro-
jected to increase to 57 000 by the end of this decade.
More than ever before our society now depends on
technology in space, and it is therefore most impor-
tant and timely to understand the vulnerabilities of
our infrastructure. Moreover, routine space-weather
predictions are needed for the safe operation of power
grids, launch and maintenance of satellites.

The source of most of the space-weather-related phe-
nomena is the Sun. The matured understanding of the
space physics phenomena allows for the development
of new tools with nowcasting or predictive capabilities.
The focused research on the processes responsible for
acceleration and loss of particles in the inner magneto-
sphere allowed us to understand the physics that gov-
erns the dynamics of the energetic particle populations
trapped by the Earth’s magnetic field. These advances
in science allowed us to develop numerical models ca-
pable of modelling the fluxes of hazardous particle
radiation. A number of such models are already oper-
ating at different research centres around the world.
Advances in global magneto-hydro-dynamical (MHD)
models allow us to simulate how the disturbances from
the Sun propagate towards the Earth. Such models
will provide longer-horizon space-weather forecasts
that will enable stakeholders to respond to the predic-
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Figure 4: Effects of space weather on various infrastructures (Baker & Lanzerotti, 2016).

tions. There is ongoing work that focuses on coupling
the global heliophysics codes with the inner magneto-
spheric codes and also ongoing work on developing
ensemble simulations that can provide probabilistic
forecasts.

The rapidly increasing number of observations presents
a challenge to researchers. The increased volume of
measurements from various sources requires the devel-
opment of new tools that will allow the utilisation of
all of these measurements. The most promising among
such tools are data assimilation and machine learning.
Data assimilation allows for correcting the models by
blending models and observations in an optimal way
according to the underlying errors.

One of the most effective approaches to understand-
ing and modelling the space-weather phenomena that
has emerged in recent years is machine learning (ML)
(e.g., Camporeale, 2019). Over the last decade, ML
methods have been employed to model a variety of
space-weather problems. For example, geomagnetic in-
dices such as the planetary index Kp, provided by GFZ
Potsdam, has been modelled using neural networks to
forecast geomagnetic conditions from the solar wind
observations (e.g., Shprits et al., 2019; Zhelavskaya
et al., 2019). Furthermore, neural networks have been
shown to be able to extract useful signals from rela-
tively noisy and irregular data sets, frequently outper-
forming the standard techniques and streamlining the

process. For instance, Zhelavskaya et al. (2016) used
electric field spectrograms from the Van Allen Probes
mission to infer special features from the spectrograms
that allow inferring total plasma density by applying
multi-layer perceptrons. The obtained electron den-
sities have been used to create global models of the
Earth’s plasmasphere, which is a region of cold plasma
in space, corotating with the Earth (e.g., Zhelavskaya
et al., 2017, 2019).

Machine-learning methods have also been used for
creating nowcasting models of higher-energy plasma
populations in the Earth’s magnetosphere. For instance,
Smirnov et al. (2020) employed the gradient-boosting
decision-trees ensembles to model the flux of electrons
at energies of hundreds of keV in the outer radiation
belt. These electrons are known to be very dynamic
and governed by complex plasma physics and transport
processes. One of the open questions actively explored
by the space-weather community is whether the pro-
cesses and dynamics of the Earth’s magnetosphere can
be predicted from simply using the solar images, with-
out employing satellite measurements at all. Recent
research has shown that the solar wind velocity can
be well predicted through attention-based neural net-
works (Brown et al., 2022), which paves the way for
further exploration of machine-learning capabilities
in predicting the space-weather phenomena from im-
ages of the Sun. Machine-learning tools have demon-
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strated to capture the global dynamics from sparse
observations and are remarkably good at reproducing
the non-linear dynamics of complex space-physics sys-
tems but, similarly to the situation in earthquake early
warning, may be most prone to error during extreme
events when correct predictions are most critical. The
combination of physics-based modelling with data as-
similation andmachine learning will be most important
for achieving future predictive capabilities.

The early-warning downstream part: warning
chain, communication and uncertainties
Early-warning processes are usually divided in two es-
sential consecutive parts: the upstream and the down-
stream part. The upstream part comprises all moni-
toring activities, data evaluation, modelling activities,
construction of a situation picture and formulation of
a warning message. The downstream process is built
around a warning chain to assure that warnings are
disseminated to the communities at risk in a timely
manner and preparedness plans for proper reaction are
in place. The downstream process usually comprises
many stakeholders like disaster risk management in-
stitutions, local administration and decision makers,
broadcasting media and last but not least the people
(communities) at risk, which require early-warning in-
formation to be able to react on time in order to save
lives and properties (e.g., Spahn et al., 2014).

When designing early-warning systems, the informa-
tion requirements and reaction capacities of commu-
nities at risk need to be taken as a principal guiding
reference. Timelines, standard operation procedures
(SOPs) and decision-making processes between institu-
tions in the warning chain must be clarified and agreed
upon to assure that warnings can reach their recipients.
Evacuation decisions in particular play an important
role. These often have to be made under time pres-
sure and can have far-reaching consequences and are
therefore a critical element in the warning process.

If the downstream processes are not properly coordi-
nated with the upstream processes and fully functional,
the warning process is likely to fail. The experiences
during the devastating flooding event in the western
part of Germany in the Eifel region with more than
180 casualties have clearly demonstrated this. While
forecasting and early warning worked well in the up-
stream part of the warning process with sufficient lead
time and adequate information on the level of risk, the
downstream part, especially at decision-making levels,
largely failed.

A sound knowledge of hazards and risks is the basic
prerequisite for authorities and the population to
be able to understand the possible consequences
of an extreme situation, prepare accordingly and
respond well in an emergency (e.g., Rafliana et al.,
2022). Building on this, a good mix of risk-aware
strategies at the community level, combined with
greater awareness and self-protection by individuals,

can contribute significantly to minimising negative
consequences. Especially in quick-onset events with
lead times from seconds (earthquake) to minutes or
hours (floods, tsunamis, volcanoes), the population
should be able to take protective measures (e.g.,
duck-cover-hold for earthquakes) or self-evacuate
instead of waiting for orders. It will be the challenge
for transdisciplinary research into the downstream
part to strengthen such capacities and to give
clear science-based recommendations based on risk
knowledge to different types of stakeholders how to
handle such situations. An exemplary activity is the
so-called Tsunami Ready program (see, for instance,
https://www.weather.gov/tsunamiready/guidelines),
where practical guidelines on the community level
for the mitigation of the tsunami threat have been
developed (Fig. 5). This may also involve automated
warning processes to protect technical infrastructure
and minimise secondary effects (e.g., fires) in
some cases, such as earthquake early warning or
space-weather forecasting.

What is inherent and characteristic for research in the
downstream part is the necessarily highly transdisci-
plinary approach and strategy that has to be followed.
Important in this field is the communication and the
understanding of uncertainties of the whole warning
process. It is essential to work out between science
and stakeholders (especially communities at risk) the
strengths and weaknesses of early-warning processes,
the role of uncertainties in the decision process and
the proper classification and valuation of false alarms.
These transdisciplinary approaches are particularly im-
portant to take into account new types of hazards and
hazard cascades like outbursts of glacial lakes and land-
slide dammed lakes (e.g., Cook et al., 2021), which
will likely increase as a result of climate change.

Improving early-warning systems also implies better
interfaces between upstream and downstream, a com-
mon vision of all actors (scientists, politicians, popu-
lation) of the possible impacts of extreme events and
the confidence of the population in the scientific and
technical messages delivered. Such a risk culture and
common trust requires preparatory work: transparency
and openness of data and models used in the upstream
part, solid work to ensure that technical documents
are understandable by the various actors belonging to
the entire risk chain, development of citizen science
actions and the creation of scenarios that are made
available and understood by the population and deci-
sion makers so that the possible effects can be easily
communicated and visualised. It has also been shown
(e.g., Kreibich et al., 2021) that individual preparations
long before the actual occurrence of extreme events
(storage of drinking water in homes, fitting out or re-
inforcement of houses to reduce damage) contribute
to this risk culture and to a better reaction to warning
messages.
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Figure 5: Tsunami awareness and evacuation poster used in Indonesia.

Concluding remarks and outlook
Early-warning capacities and capabilities substantially
increased during the past decades. This is due to a
number of technological developments:

• Increasing global and regional availability of more
and more observational and monitoring data from
land-based, marine-based and space-based instru-
mentation,

• ever increasing connectivity and communication
bandwidth, and

• rapidly increasing IT capacities for faster-than-real-
time data-driven simulation forecasting.

New technologies will contribute to the improvement
of early warning: AI and ML techniques to process very
large and multi-instrumental real-time data streams,
application of HPC facilities to simulate realistic haz-
ard situations in near and faster than real time with
high spatial resolution, low-cost sensors for a num-
ber of physical parameters to build dense monitoring
networks, new applications of space technologies in-
cluding denser satellite networks in the direction of
real-time global observational coverage of the Earth.
Including the private sector with its massive sensor net-
works (smartphones, smart buildings) in early-warning
processes can result in a paradigm shift. We will see
in the coming decades a substantial improvement of
forecasting capabilities for numerous hazards including
multi-hazard situations with cascading effects towards
improved early warning for communities and infra-
structures in densely populated regions.

It will remain a huge and challenging task to reduce
the vulnerability of human societies and to increase

the response capabilities of communities at risk. Early-
warning systems that are designed and implemented
with an end-to-end approach can make an important
contribution to this. This includes the implementation
of automatic procedures (when lead time is short) in-
tegrated in the development of smart cities/buildings,
an improved outreach to communities using the more
dense and broad communication networks, a more
sophisticated knowledge transfer to a broad group of
stakeholders to improve their response capabilities, the
definition and implementation of clear responsibilities
and defined roles in disaster risk reduction (DRR) as
well as easily understandable standard operation pro-
cedures (SOP), especially against the background that
a number of hazards (meteorological, hydrological,
hazard cascades) may occur more frequently in the
future.

Instruments for achieving such goals are strengthening
the interdisciplinary and transdisciplinary cooperation,
the joint interdisciplinary usage of monitoring infra-
structure and the break-up of scientific silos but also
the softening of borders between institutions and agen-
cies. We believe that geophysics has successfully taken
on the socio-cultural responsibility to contribute to the
development of a resilient society and should continue
to pursue development of technologies to reduce vul-
nerabilities and make our world safer.
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